如何查看MATLAB中simulink仿真曲线的超调量、调节时间等参数?_百度...
1、通过3可以调出右边的标尺。调出刻度尺我们可以找见overshoot 等等,但是没有调节时间。由于我们知道调节时间是最后稳定输出的5%或2%,这里就只能给标尺手动输入稳态值和误差带的值,输入的地方在4。
2、通过out模块。对于低版本的matlab(15a之前的)要取消勾选limitdatapointstolast。在变量空间就可以看到tout和yout的变量,这样就可以对数据进行处理了。添加输入输出,设置调节时间和超调量,然后单击Plot即可。
3、导入电机的输入输出曲线数据至MATLAB。 使用系统辨识APP进行辨识,获得传递函数。 利用PID TUNNER进行自动整定PID参数。在伪造数据阶段,通过设计电机传递函数并在SIMULINK搭建PID控制器,导入数据后,使用系统辨识APP进行辨识,获得传递函数。
4、先设置放大系数,K,然后慢慢调节积分和微分系数,调节的时候看反馈和超调量,响应时间怎么样。这个要看经验了。
5、在SIMULINK中SOURCE中选一个信号,比如STEP,作为输入信号,扰动加通道的在加法器上。激励源用step,sinewave,randomnumber,作用一段时间用counter+switch实现。
示波器超调量怎么看
首先打开simulink示波器,点击设置。其次点击显示设置,点击超调量设置。最后点击显示超调量就可以了。
第一个部分5就是调出X,Y方向两个方向的刻度尺。每个方向的刻度尺有两个,4那个地方就可以显示了刻度尺的值,修改刻度值也在这里。1那里用来放大,2是让图像从放大状态还原到上面那张图的正常显示的样子。
首先先进入示波器绘图工具。其次在simulink导出来scope的数据。最后对数据进行计算得到超调量和上升时间就可以得到上升波形图。
初始设置:根据被控对象的特性和控制要求,初步设定P、I、D的初始值。一般建议先只使用比例控制,观察系统的基本响应特性。 调整比例系数P:逐步增加P值,观察系统响应。如果系统响应过慢,可以适当增加P值以提高响应速度;如果系统出现振荡,说明P值过大,应适当减小。
持两个超声转换器(一个是发射,一个是接收)的距离不变,只要改变一下信号源的输出频率,看一下示波器上的波形有没有变化就知道了,如果有变化则两者相等,否则不相等(这种情况表明你信号源的信号没有输入到转换器里,仔细检查一下接线和仪器)。
simulink求超调量和调节时间
通过out模块。对于低版本的matlab(15a之前的)要取消勾选limitdatapointstolast。在变量空间就可以看到tout和yout的变量,这样就可以对数据进行处理了。添加输入输出,设置调节时间和超调量,然后单击Plot即可。
通过3可以调出右边的标尺。调出刻度尺我们可以找见overshoot 等等,但是没有调节时间。由于我们知道调节时间是最后稳定输出的5%或2%,这里就只能给标尺手动输入稳态值和误差带的值,输入的地方在4。
二阶弹簧阻尼系统的性能指标包括:调节时间T(14)、上升时间τ(15)、峰值时间Tp(16)、超调量Mp(17)和稳态时间Tss(18)。在控制工程中,通常希望系统具有适度的阻尼、较快的响应速度和较短的调节时间,因此二阶控制系统的阻尼比ζ一般取值在0.4~0.8之间。
通过调整PID参数,如Kp=0.005,Ki=0.015,同样可以实现较好的系统响应,虽然响应速度可能不如完全使用PID控制,但在超调量和稳定性方面有明显改善。通过以上经验分享,我们可以对PID控制参数的调节有更深入的理解。
二阶系统分析
1、二阶系统分析是一个在工程和物理学科中用于描述和预测系统动态行为的重要概念,其核心在于理解系统的阻尼特性、响应速度和稳定性。以下是二阶系统分析的关键点:典型系统与方程:典型的二阶系统是弹簧阻尼系统,由弹簧系数k、阻尼系数B等参数构成。
2、二阶系统分析是工程和物理学科中一个重要概念。其中,典型的二阶系统是弹簧阻尼系统(mass-damping-spring),如图1所示。系统中,k为弹簧系数,B为阻尼系数,通过方程(1)和(2)可以得到其基本特性。定义固有频率为ω0,阻尼比ζ,则方程可以简化为(3)。
3、二阶系统分析涉及多种应用实例,以弹簧阻尼系统为例,其关键在于理解系统的动态特性。考虑典型的二阶系统,弹簧阻尼系统,包含弹簧系数k和阻尼系数B,系统可以表示为微分方程。通过定义固有频率和阻尼比,可以简化方程,并对给定初始条件进行求解。在Simulink中搭建模型,展示不同阻尼情况下的系统行为。
有哪个兄弟发点“电流转速双闭环直流调速系统设计与仿真”的资料吗?要...
根据转速、电流双闭环调速系统的设计方法,用Simulink做了带电流补偿的电压负反馈直流调速系统仿真,仿真结果证明,增加取样电感后可以消除电流补偿的滞后,在忽略参数变化的影响下精确地补偿电枢压降,改进后的电压负反馈电流补偿能够获得跟转速负反馈同样的效果。
三)转速电流双闭环电路 速度调节及抗负载和电网扰动,采用双PI调节器,可获得良好的动静态效果。设计过程采用“二阶最佳”参数设计法设计,结合系统动静态效果选择最佳参数。从抑制超调的观点出发,电流环校正成典型I型系统。
转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。采用PID调节的单个转速闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。
在单闭环系统中,只有电流截止负反馈环节是专门用来控制电流的。但它只是在超过临界电流Idcr值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。
第2章转速、电流双闭环直流调速系统和调节器的工程设计方法内容提要转速、电流双闭环控制的直流调速系统是应用最广性能很好的直流调速系统。本章着重阐明其控制规律、性能特点和设计方法,是各种交、直流电力拖动自动控制系统的重要基础。
双闭环直流调速系统需要设计转速调节器和电流调节器,从图中可以看出系统的内环是电流环,外环是转速环。
时域动态性能指标有想哪些,它们反映系统哪些方面的性能?
1、时域动态指标有6个,分别为:延迟时间:响应曲线达到稳态值50%所需时间。上升时间:响应曲线从稳态值10%上升到90%所需时间。峰值时间:响应曲线上升超过稳态达到第一个峰值所需时间。超调量:响应曲线中超出稳态值的最大偏差量和稳态值之比称为最大超解量,简称超调量,一般用百分比表示。
2、控制系统的时域动态性能指标主要包括超调量%、调节时间Ts、峰值时间Tp等。首先,超调量%用于描述系统响应过程中的最大偏离程度。它是指阶跃响应曲线的最大峰值与稳态值之差与稳态值之比的百分数。超调量越小,说明系统的相对稳定性越好,即系统能够更快地恢复到稳态值,且偏离程度较小。
3、控制系统时域性能指标有调节时间和超调量是反映系统动态性能好坏的两个最主要指标。反映系统的稳准快性能对应的指标是:超调量反映动态过程的振荡激烈程度,是平稳性指标,也称为相对稳定性能。
4、控制系统时域性能指标是分析系统在特定输入作用下的稳定性、瞬态和稳态性能的方法。这种分析方法以时间域为基础,具有直观性和准确性。 系统输出量的时域表示可以通过微分方程得到,也可以通过传递函数得到。在初始条件为零的情况下,通常使用传递函数来研究系统性能,从而间接评估系统的性能指标。
5、指控制系统在一定的输入下,根据输出量的时域表达式,分析系统的稳定性、瞬态和稳态性能。 由于时域分析是直接在时间域中对系统进行分析的方法,所以时域分析具有直观和准确的优点。 系统输出量的时域表示可由微分方程得到,也可由传递函数得到。